Новости Нефтегазовая пром.
Выставки Наука и технология



Фторид криптона II

Фторид криптона II


Фторид криптона II
Фторид криптона II
Фторид криптона II
Фторид криптона II
Систематическое
наименование
Фторид криптона II
Хим. формула KrF2
Рац. формула F2Kr
Молярная масса 121,8 г/моль
Плотность (при −78 °C) 3,3 г/см³
Температура
 • плавления (возгонка) −30 °C
 • разложения 20 °C
Рег. номер CAS 13773-81-4
PubChem
SMILES
InChI
ChemSpider
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Дифторид криптона KrF2 — летучие бесцветные кристаллы, первое открытое соединение криптона. Весьма химически активное вещество. При повышенных температурах разлагается на фтор и криптон.

Физико-химические свойства

Свойство Значение
Энтальпия образования (298 К, в газовой фазе) 60,2 кДж/моль
Энтальпия образования (298 К, в твёрдой фазе) 15,5 кДж/моль
Энтропия образования (300 К, в газовой фазе) 253,6 Дж/(моль·К)
Энтальпия возгонки 37 кДж/моль
Теплоёмкость (300 К, в газовой фазе) 54,2 Дж/(моль·К)

Растворимость

Растворитель Растворимость
(г/100 г растворителя)
Пентафторид брома (20 °C) 81
фтороводород (20 °C) 195
Вода Взаимодействует

Строение и кристаллические модификации

Дифторид криптона может существовать в одной из двух кристаллических модификаций: α-форма и β-форма. β-KrF2 устойчива при температурах выше −80 °C. При более низких температурах устойчива α-форма.

Элементарная ячейка кристаллической решетки β-формы является тетрагональной со следующими параметрами ячейки:

Параметр Значение
а 0,458 нм
b 0,458 нм
c 0,583 нм
Пространственная
группа симметрии
P42/mnm

Методы получения

Дифторид криптона можно получить многими способами из простых веществ. Ниже рассмотрены методы синтеза KrF2 в порядке увеличения скорости получения продукта. Общая схема реакции следующая:

 Kr + F2 → KrF2

Активация электрическим разрядом

При этом методе также частично образуется тетрафторид криптона. Смесь фтора с криптоном в соотношении от 1:1 до 1:2 под давлением от 40 до 60 мм. рт. ст. активируется мощным электрическим разрядом (сила тока 30 мА, напряжение 500—1000 В). Скорость такого синтеза может достигать четверти грамма в час, однако метод достаточно нестабилен и чувствителен к внешним факторам.

Протонная бомбардировка

Используя бомбардировку смеси простых веществ при температуре 133 К разогнаными в поле 10 МВ протонами, можно получить дифторид криптона со скоростью около одного грамма в час. Однако, при достижении некоторого содержания дифторида криптона в смеси, скорость реакции сильно замедляется вплоть до прекращения синтеза за счёт конкурирующего распада продукта реакции под действием бомбардировки.

Фотохимический метод

Фотохимический метод получения основан на действии ультрафиолетового излучения с длиной волны 303—313 нм на смесь фтора и криптона. При этом можно получать продукт со скоростью 1,22 грамма в час. Более жёсткое излучение (с длиной волны менее 300 нм) активирует обратный процесс распада дифторида. Наиболее оптимальной температурой является 77 К, при этой температуре криптон находится в твёрдом состоянии, а фтор — в жидком.

Температурная активация

Твёрдый криптон должен находиться на некотором расстоянии от газообразного фтора, который нагревается до 680 °C, при этом молекулы фтора распадаются на свободные радикалы, и фтор окисляет криптон. Нагревание ведётся раскалённой проволокой, при этом за счёт резкого градиента температуры (до 900 градусов/см) можно подобрать условия, при которых криптон не переходит в газовую фазу. Этим методом можно получать фторид криптона со скоростью до 6 граммов/час.

Химические свойства

  • При резком нагревании разлагается со взрывом на простые вещества:
 KrF2 → Kr + F2
  • Бурно реагирует с водой (выше 10 °C со взрывом):
 2 KrF2 + 2 H2O → 2 Kr + 4 HF + O2
  • Очень сильный фторирующий агент. Вступает во взаимодействие с большинством элементов, при этом в качестве продуктов выделяются высшие фториды элементов и криптон. Благодаря дифториду криптона, были получены такие уникальные вещества, как пентафторид золота (AuF5), тетрафторид празеодима (PrF4), соли гексафторброма (ВrF6+), соли гексафторхлора (ClF6+), соли тетрафтораммония (NF4+) и некоторые другие:
 2 Au + 5 KrF2 → 2 AuF5 + 5 Kr
  • Для фторирования органических соединений практически всегда не пригоден, так как очень бурно протекает реакция фторирования (часто со взрывом или воспламенением) с очень низкой селективностью (выходы до 5 % необходимого вещества). При этом параллельно с фторированием протекает конкурирующая реакция окисления, которая обычно идет с деструкцией углеродного скелета органической молекулы.
  • Проявляет свойства слабого основания Льюиса. Например, при взаимодействии с кислотами Льюиса, образуются комплексные соединения состава [KrF]+[EF6] (тут в качестве элемента E могут быть Sb, Au, Pt и другие металлы):
 SbF5 + KrF2 → [KrF][SbF6]

Комплексы с SbF5 и AuF5 термически несколько стабильнее дифторида криптона.

Применение

  • Чаще всего применяется как фторирующий агент в неорганическом синтезе.
  • Интересным применением является получение атомарного фтора.

Хранение

Так как дифторид криптона является достаточно сильным окислителем и фторирующим агентом, хранят его в герметичных никелевых или алюминиевых ёмкостях (так как никель и алюминий пассивируются под действием KrF2) при температуре ниже 0 °C.