Новости Нефтегазовая пром.
Выставки Наука и технология



Бор

Бор


Бор



Бор
Тёмно-коричневое или чёрное вещество
Бор
Элементарный бор
Название, символ, номер Бор / Borum (B), 5
Атомная масса
(молярная масса)
[10,806; 10,821]а. е. м. (г/моль)
Электронная конфигурация [He] 2s2 2p1
Радиус атома 98 пм
Ковалентный радиус 82 пм
Радиус иона 23 (+3e) пм
Электроотрицательность 2,04 (шкала Полинга)
Степени окисления -3;0;+3
Энергия ионизации
(первый электрон)
 800,2(8,29) кДж/моль (эВ)
Плотность (при н. у.) 2,34 г/см³
Температура плавления 2 348 K (2075 °C)
Температура кипения 4 138 K (3865 °C)
Уд. теплота плавления 23,60 кДж/моль
Уд. теплота испарения 504,5 кДж/моль
Молярная теплоёмкость 11,09 Дж/(K·моль)
Молярный объём 4,6 см³/моль
Структура решётки ромбоэдрическая
Параметры решётки a=10,17; α=65,18 Å
Отношение c/a 0,576
Температура Дебая 1250 K
Теплопроводность (300 K) 27,4 Вт/(м·К)
Номер CAS 7440-42-8
5
Бор
B
10,81
2s22p1

Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.

Бор

История и происхождение названия

Впервые получен в 1808 году французскими химиками Ж. Гей-Люссаком и Л. Тенаром нагреванием борного ангидрида B2O3 с металлическим калием. Через несколько месяцев бор получил Хэмфри Дэви электролизом расплавленного B2O3.

Название элемента произошло от арабского слова бурак (араб. بورق‎) или персидского бурах (перс. بوره‎), которые использовались для обозначения буры.

Нахождение в природе

Среднее содержание бора в земной коре составляет 4 г/т. Несмотря на это, известно около 100 собственных минералов бора; в «чужих» минералах он почти не встречается. Это объясняется, прежде всего, тем, что у комплексных анионов бора (а именно в таком виде он входит в большинство минералов) нет достаточно распространённых аналогов. Почти во всех минералах бор связан с кислородом, а группа фторсодержащих соединений совсем малочисленна. Элементарный бор в природе не встречается. Он входит во многие соединения и широко распространён, особенно в небольших концентрациях; в виде боросиликатов и боратов, а также в виде изоморфной примеси в минералах входит в состав многих изверженных и осадочных пород. Бор известен в нефтяных и морских водах (в морской воде 4,6 мг/л), в водах соляных озёр, горячих источников и грязевых вулканов.

Основные минеральные формы бора:

  • Боросиликаты: датолит CaBSiO4OH, данбурит CaB2Si2O8
  • Бораты: бура Na2B4O7·10H2O, ашарит MgBO2(OH), гидроборацит (Ca, Mg)B6O11·6H2O, иниоит Ca2B6O11·13H2O, калиборит KMg2B11O19·9H2O.

Также различают несколько типов месторождений бора:

Бор
Образец датолита. Дальнегорское боросиликатное месторождение
  • Месторождения боратов в магнезиальных скарнах:
    • людвигитовые и людвигито-магнетитовые руды;
    • котоитовые руды в доломитовых мраморах и кальцифирах;
    • ашаритовые и ашарито-магнетитовые руды.
  • Месторождения боросиликатов в известковых скарнах (датолитовые и данбуритовые руды);
  • Месторождения боросиликатов в грейзенах, вторичных кварцитах и гидротермальных жилах (турмалиновые концентрации);
  • Вулканогенно-осадочные:
    • борные руды, отложенные из продуктов вулканической деятельности;
    • переотложенные боратовые руды в озёрных осадках;
    • погребённые осадочные боратовые руды.
  • Галогенно-осадочные месторождения:
    • месторождения боратов в галогенных осадках;
    • месторождения боратов в гипсовой шляпе над соляными куполами.

Крупнейшее месторождение России находится в Дальнегорске (Приморье). Оно относится к боросиликатному типу. В этом одном компактном месторождении сосредоточено не менее 3 % всех мировых запасов бора. На действующем при месторождении горно-химическом предприятии выпускается боросодержащая продукция, которая удовлетворяет потребности отечественной промышленности. При этом 75 % продукции идёт на экспорт в Корею, Японию и Китай.

Получение

  • Наиболее чистый бор получают пиролизом бороводородов. Такой бор используется для производства полупроводниковых материалов и тонких химических синтезов.
 B2H6 2B + 3H2
  • Метод металлотермии (чаще восстановление магнием или натрием):
 B2O3 + 3Mg ⟶ 3MgO + 2B 
 KBF4 + 3Na ⟶ 3NaF + KF + B
  • Термическое разложение паров бромида бора на раскалённой (1000—1200 °C) вольфрамовой проволоке в присутствии водорода (метод Ван-Аркеля):
 2BBr3 + 3H2W 2B + 6HBr

Физические свойства

Бор
Сечения захвата нейтронов изотопами 10B (верхняя кривая) и 11B (нижняя кривая).

Чрезвычайно твёрдое вещество (уступает только алмазу, нитриду бора (боразону), карбиду бора, сплаву бор-углерод-кремний, карбиду скандия-титана). Обладает хрупкостью и полупроводниковыми свойствами (широкозонный полупроводник).

У бора — самый высокий предел прочности на разрыв 5,7 ГПа.

Изотопы бора

Основная статья: Изотопы бора

В природе бор находится в виде двух изотопов 10B (19,8 %) и 11B (80,2 %).

10B имеет очень высокое сечение захвата тепловых нейтронов, равное 3837 барн (для большинства нуклидов это сечение близко к единицам или долям барна), причём при захвате нейтрона образуются два нерадиоактивных ядра (альфа-частица и литий-7), очень быстро тормозящиеся в среде, а проникающая радиация (гамма-кванты) при этом отсутствует, в отличие от аналогичных реакций захвата нейтронов другими нуклидами:

10B + n → 11B* → α + 7Li + 2,31 МэВ.

Поэтому 10B в составе борной кислоты и других химических соединений применяется в атомных реакторах для регулирования реактивности, а также для биологической защиты от тепловых нейтронов. Кроме того, бор применяется в нейтрон-захватной терапии рака.

Кроме двух стабильных, известно ещё 12 радиоактивных изотопов бора, из них самым долгоживущим является 8B с периодом полураспада 0,77 с.

Происхождение

Все изотопы бора возникли в межзвёздном газе в результате расщепления тяжелых ядер космическими лучами, или при взрывах сверхновых.

Химические свойства

Бор
Ионы бора окрашивают пламя в зелёный цвет

По многим физическим и химическим свойствам неметалл бор напоминает кремний.

Химически бор довольно инертен и при комнатной температуре взаимодействует только со фтором:

 2B + 3F2 ⟶ 2BF3

При нагревании бор реагирует с другими галогенами с образованием тригалогенидов, с азотом образует нитрид бора BN, с фосфором — фосфид BP, с углеродом — карбиды различного состава (B4C, B12C3, B13C2). При нагревании в атмосфере кислорода или на воздухе бор сгорает с большим выделением теплоты, образуется оксид B2O3:

 4B + 3O2 ⟶ 2B2O3

С водородом бор напрямую не взаимодействует, хотя известно довольно большое число бороводородов (боранов) различного состава, получаемых при обработке боридов щелочных или щелочноземельных металлов кислотой:

 Mg3B2 + 6HCl ⟶ B2H6↑ + 3MgCl2

При сильном нагревании бор проявляет восстановительные свойства. Он способен, например, восстановить кремний или фосфор из их оксидов:

 3SiO2 + 4B ⟶ 3Si + 2B2O3
 3P2O5 + 10B ⟶ 5B2O3 + 6P

Данное свойство бора можно объяснить очень высокой прочностью химических связей в оксиде бора B2O3.

При отсутствии окислителей бор устойчив к действию растворов щелочей. Растворяется в расплаве смеси гидроксида и нитрата калия:

 2B + 2KOH + 3KNO3ot 2KBO2 + 3KNO2 + H2O

В горячей азотной, серной кислотах и в царской водке бор растворяется с образованием борной кислоты H3BO3.

Оксид бора B2O3 — типичный кислотный оксид. Он реагирует с водой с образованием борной кислоты:

 B2O3 + 3H2O ⟶ 2H3BO3

При взаимодействии борной кислоты со щелочами возникают соли не самой борной кислоты — бораты (содержащие анион BO33−), а тетрабораты, например:

 4H3BO3 + 2NaOH ⟶ Na2B4O7 + 7H2O

В 2014 г. исследователями из Германии был получен бис(диазаборолил) бериллия, в котором атомы бериллия и бора образуют двухцентровую двухэлектронную связь (2c-2e), впервые полученную и нехарактерную для соседних элементов в Периодической таблице.

Применение

Элементарный бор

Бор (в виде волокон) служит упрочняющим веществом многих композиционных материалов.

Также бор часто используют в электронике в качестве акцепторной добавки для изменения типа проводимости кремния.

Бор применяется в металлургии в качестве микролегирующего элемента, значительно повышающего прокаливаемость сталей.

Бор применяется и в медицине при бор-нейтронозахватной терапии (способ избирательного поражения клеток злокачественных опухолей).

Соединения бора

Карбид бора применяется в компактном виде для изготовления газодинамических подшипников.

Пербораты / пероксобораты (содержат ион [B2(O2)2(OH)4]2) [B4O12H8]) применяются как окислительные агенты. Технический продукт содержит до 10,4 % «активного кислорода», на их основе производят отбеливатели, не содержащие хлор («персиль», «персоль» и др.).

Отдельно также стоит указать на то, что сплавы бор-углерод-кремний обладают сверхвысокой твёрдостью и способны заменить любой шлифовальный материал (кроме алмаза, нитрида бора по микротвёрдости), а по стоимости и эффективности шлифования (экономической) превосходят все известные человечеству абразивные материалы.

Сплав бора с магнием (диборид магния MgB2) обладает, на данный момент, рекордно высокой критической температурой перехода в сверхпроводящее состояние среди сверхпроводников первого рода. Появление вышеуказанной статьи стимулировало большой рост работ по этой тематике.

борная кислота (B(OH)3) широко применяется в атомной энергетике в качестве поглотителя нейтронов в ядерных реакторах типа ВВЭР (PWR) на «тепловых» («медленных») нейтронах. Благодаря своим нейтронно-физическим характеристикам и возможности растворяться в воде применение борной кислоты делает возможным плавное (не ступенчатое) регулирование мощности ядерного реактора путём изменения её концентрации в теплоносителе — так называемое «борное регулирование».

борная кислота применяется также в медицине и ветеринарии.

нитрид бора, активированный углеродом, является люминофором со свечением от синего до жёлтого цвета под действием ультрафиолета. Обладает самостоятельной фосфоресценцией в темноте и активируется органическими веществами при нагреве до 1000 °C. Изготовление люминофоров из нитрида бора, состава BN/C не имеет промышленного назначения, но широко практиковалось химиками-любителями в первой половине XX века.

Боросиликатное стекло — стекло обычного состава, в котором заменяют щелочные компоненты в исходном сырье на окись бора (B2O3).

Фторид бора BF3 при нормальных условиях является газообразным веществом, используется как катализатор в оргсинтезе, а также как рабочее тело в газонаполненных детекторах тепловых нейтронов благодаря захвату нейтронов бором-10 с образованием ядер лития-7 и гелия-4, ионизирующих газ (см. реакцию выше).

Бороводороды и борорганические соединения

Ряд производных бора (бороводороды) являются эффективными ракетными топливами (диборан B2H6, пентаборан, тетраборан и др.), а некоторые полимерные соединения бора с водородом и углеродом стойки к химическим воздействиям и высоким температурам (как широко известный пластик Карборан-22).

Боразон и его гексагидрид

нитрид бора (боразон) подобен (по составу электронов) углероду. На его основе образуется обширная группа соединений, в чём-то подобных органическим.

Так, гексагидрид боразона (H3BNH3, похож на этан по строению) при обычных условиях твёрдое соединение с плотностью 0,78 г/см3, содержит почти 20 % водорода по массе. Его могут использовать водородные топливные элементы, питающие электромобили.

Биологическая роль

Основная статья: Биологическая роль бора

Бор — важный микроэлемент, необходимый для нормальной жизнедеятельности растений. Недостаток бора останавливает их развитие, вызывает у культурных растений различные болезни. В основе этого лежат нарушения окислительных и энергетических процессов в тканях, снижение биосинтеза необходимых веществ. При дефиците бора в почве в сельском хозяйстве применяют борные микроудобрения (борная кислота, бура и другие), повышающие урожай, улучшающие качество продукции и предотвращающие ряд заболеваний растений.

Роль бора в животном организме не выяснена. В мышечной ткани человека содержится (0,33—1)⋅10−4 % бора, в костной ткани (1,1—3,3)⋅10−4 %, в крови — 0,13 мг/л. Ежедневно с пищей человек получает 1—3 мг бора. Токсичная доза — 4 г. ЛД₅₀ ≈ 6 г/кг массы тела.

Один из редких типов дистрофии роговицы связан с геном, кодирующим белок-транспортер, предположительно регулирующий внутриклеточную концентрацию бора.

Бор

Бор